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ing on the original choice of  w, with or without Jas- 
won 's  restriction on the size of  t. The simplest way of  
plot t ing centred lattices is temporari ly  to ignore the 
centring, choose u,v, w as lattice vectors, with integral 
components ,  which define a unit  cell of  volume equal 
to that  of  the centred unit  cell, and plot the lattice 
planes so described. Then, centre each of  the seven 
vectors u, v, w, u + v, v + w, w + u, u + v + w that satisfies 
the condit ions in Table 1. Finally, plot extra nets of  
points  based on each of  the centring points. 

Table  1. Conditions under which a lattice vector with 
integral components Sl, s2, s3 will be centred 

Number of 
tested vec- 
tors that 
will be 

Lattice Condition centred 
Body-centred sl,s2, s3 of same parity 1 
Face-centred sl + s2 + s3 even 3 
Base (C)-centred st +s2 and s3, both even 1 

I am indebted to the Association of Commonweal th  
Universities for the award of a Visiting Professorship, 
to CSIRO for a grant  of  leave, and to the University 
of Warwick for hospitali ty while this note was pre- 
pared. 
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One-Dimensional Models for Small-Angle X-ray Diffraction from Crystalline Polymers. 
I. General Model 
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The relationship between a one-dimensional model for predicting small-angle X-ray scattering from 
crystalline polymers and a three-dimensional structure containing a one-dimensional periodicity is 
discussed. The basic features of previous models are reviewed. Based on the approach of Hosemann for 
a simple two-phase system, a model is formulated in which the density variation within the crystalline 
regions is described by an arbitrary function ~(y). 

Introduction 

This article is concerned with the formulat ion of  a gen- 
eral one-dimensional  model suitable for describing dis- 
crete small-angle X-ray scattering from crystalline poly- 
mers. The diffraction occurs at angles around one 
degree and is generally attributed to a regular alterna- 
tion in texture every 100-300 A between crystalline and 
amorphous-l ike intercrystalline regions. In most types 

of  sample, the periodicity within each local scattering 
sequence is essentially one-dimensional.  This is well 
illustrated by the case of samples made by sedimenting 
a suspension of  solution grown polymer crystals. In 
their simplest form, the crystals are about 100 A thick, 
bordered on their planar  surface by thin layers of  amor- 
phous-like material  (Keller, 1968). Thus on sediment- 
ing, the crystals stack on top of one another to form a 
periodic c rys ta l l ine-am°rph°us  structure perpendicular  
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to the lamellar planes. However both the crystalline 
and amorphous thickness can fluctuate in size through- 
out the sample, so that the periodicity is imperfect and 
the resulting diffraction peaks are broad. 

It is an obvious simplification to represent the peri- 
odicity within such polymer structures with a one-di- 
mensional model and to overlook the structural details 
in the other two dimensions. The approach allows the 
nature of the periodicity to be described and visualized 
with the minimum number of parameters. Most pre- 
vious treatments of this kind have considered two dis- 
tinct phases where the mean electron density changes 
abruptly at each crystal-amorphous phase boundary. 
This leads to models where the one-dimensional varia- 
tion in electron density traces a rectangular step func- 
tion. The main aim of the present article is to generalize 
this approach so that the variation in density of the 
crystalline regions can be described by art arbitrary 
function ~. This provides a framework for considering 
more subtle structural features, such as a gradual rather 
than an abrupt change in density between the crystal- 
line and amorphous regions [part II, Blundell (1970)]. 

The article is in three main parts. The first part re- 
views the basis for representing three-dimensional 
structures with one-dimensional models, and shows 
that the models must represent the projection of the 
electron density onto a line perpendicular to the in- 
cident beam. The second part reviews the characteristics 
and merits of previous models where the density varia- 
tion is a rectangular step function. Finally a two phase 
model by Hosemann (1949) is used as basis for for- 
mulating the more general model. 

Relation between three-dimensional structure 
and one-dimensional model 

For polymer samples consisting of crystalline and 
amorphous phases, it is possible to simplify the scat- 
tering problem by considering only the excess in elec- 
tron density over the background amorphous value, 
since the additional scatter associated with the amor- 
phous background only occurs at angles which are too 
small for observation (Guinier, 1963, p. 323). The com- 
plete sample will consist of many separate structures 
possessing a one-dimensional periodicity. Consider one 
such sequence where the mean excess electron density 
is given by 0(r), and where the periodicity occurs along 
the component r3 of the space vector r. The angle of 
scatter can be defined by the customary reciprocal space 
vector s = ( S -  S0)/2, whose length s = Is[ = 2 sin 0/2; 
where So and S are the unit direction vectors of the 
incident and scattered rays respectively, and 20 is the 
total angle of scatter. Omitting the absolute constant 
of proportionality, the amplitude of the scattered radia- 
tion in the direction S will be given by 

a(s)= l I l o(r) exp [-  2rcis . r] dr . 

For small angle scattering where 0 -+ 0, s becomes ap- 

proximately perpendicular to So. The discrete diffrac- 
tion of interest occurs when s is parallel to the direction 
of component r3. If r3 is therefore arranged to be per- 
pendicular to So and provided the approximation of s 
being perpendicular to So is good, then the discrete 
meridonal scatter for s parallel to r3 will be given by: 

a(s)= I I l o(rlr2r3) drldr2 exp [-2zcisr3] dr3 . 

By integrating with respect to rl and r2, this can now 
be reduced to a one-dimensional problem: 

a(s) = 1 00"3) A (r3) exp [-2rcisr3] dr3 (1) 

where A(r3) is the cross-sectional area of the structure 
at the point r3, and Q(r3) is now the mean excess elec- 
tron density over the whole area A(r3). 

Equation (1) can now be thought of in terms of a 
one-dimensional model. It represents exactly the am- 
plitude of the meridional scatter from a line of non- 
overlapping scattering rods arranged perpendicular to 
So. The rods can be considered as representing the pro- 
jection of the excess density of the crystalline regions 
of the three-dimensional structure, while the gaps be- 
tween the rods represent the intervening amorphous 
regions (Bonart, 1966). If for simplicity it is assumed 
that the cross-sectional area A is constant over the 
whole length of the three-dimensional structure, then 
the variations in the rod density will reflect only changes 
in the projected crystallinity. Thus if the boundary be- 
tween crystalline and amorphous phases is sharp and 
perfectly planar, 0(r3) will be a rectangular step func- 
tion. If on the other hand the boundaries meander or 
genuine intermediate phases occur, the density profile 
of the rods will be smoothed out accordingly. 

It should be noted that equation (1) only maps out 
the amplitude for scattering directions where s is 
strictly parallel to the r3 component. However since 
the cross-sectional area in real space is finite, the value 
of the intensity in the plane s3=constant of Fourier 
space will fall off on either side of the central position 
where sl--s2 = 0. For a typical sample the orientations 
of the individual scattering sequences will be such that 
all these neighbouring positions in Fourier space will 
be cut by the Ewald sphere. It is well known that if 
the area of the scatterer in real space is A, the total 
spot intensity for a given s3 is equivalent to that ob- 
tained by making the intensity remain constant at its 
maximum value over a restricted region of Fourier 
space of area 1/A (Guinier, 1963). The total meridional 
diffracted intensity for one scattering sequence can 
therefore be obtained from (1) by calculating the 
quantity (a*a)/A. To obtain the observed intensity for 
a sample containing many scattering sequences one 
must also take account of the relevant Lorentz factor 
for the distribution of orientations (Hosemann & Bag- 
chi, 1962, p. 440). 
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P r e v i o u s  m o d e l s  

Most previous treatments have effectively considered 
scattering rods of constant density inferring that there 
is an abrupt change in projected density at amorphous- 
crystalline boundaries. Historically the first treatment 
of the one-dimensional problem was by Zernike & 
Prins (1927), who effectively considered an infinite num- 
ber of rods of constant density. They assumed the 
length of the gaps between the rods fluctuated from 
place to place according to an exponential distribution, 
while the length of the rods remained constant. Later 
Hermans (1944) considered the case where both the 
rod and gap lengths varied. The most complete and 
general treatment of this kind has been given by Hose- 
mann (1949) (see also Hosemann & Bagchi, 196:2, 
p. 410). He considered constant density rods of finite 
number N, where the statistics of the rod and gap 
lengths were given by independent general distribution 
functions H and h respectively. The distinguishing fea- 
ture of this theory of Hosemann is that there is no cor- 
relation between any two lengths, whether rods or 
gaps, except that they should randomly obey their re- 
spective distributions H and h. Each periodic length, 
from the beginning of one rod to the beginning of the 
next, depends on the individual lengths taken by both 
the intervening rod and gap. A similar situation exists 
in the study by Vonk & Kortleve (1967) and Kortleve 
& Vonk (1968) in which a comparison is made be- 
tween theoretical and experimental correlation func- 
tions. 

However there is also a slightly different approach 
to the problem, whereby the rods are considered as 
forming a one-dimensional paracrystal (see Hosemann 
& Bagchi, 1962, p. 302). This approach begins by de- 
fining an array of lattice points where the periodic dis- 
tance fluctuates from place to place according to a 
specified distribution. The rod scatterers are then placed 
at the lattice points; the rod lengths can fluctuate 
amongst themselves, but their distribution is indepen- 
dent of, and cannot be correlated with, the previously 
defined statistics of the lattice. The resulting intensity 
expression is simpler than for the previously men- 
tioned model of Hosemann in that the effects of the 
lattice statistics and the rods lengths can be separated 
into independent factors. For reasons of simplicity the 
paracrystal approach may therefore be preferred. How- 
ever a paracrystal is basically unsound for representing 
polymer structures since it places more importance on 
the rods than on the gaps between them. In real samples 
the amorphous regions as represented by the gaps, are 
equally as important as the crystalline regions in spa- 
cing out the periodic structure. The model formulated 
in this article is therefore based on the former approach 
of Hosemann (1949). 

G e n e r a l  m o d e l  

The model discussed here is an extension of the treat- 
ment in Hosemann & Bagchi (1962, p. 408). Consider 

N scattering rods denoted individually by subscript j, 
which are arranged along an axis u perpendicular to So 
(Fig. 1). Each rod is of length Yj and has its left side 
located at the point uj; it is separated from the rod on 
the left by a gap of length Zj-1 and from the rod on 
the right by Zj. However whereas Hosemann con- 
sidered rods of constant density, the situation is gen- 
eralized by describing the density by the arbitrary func- 
tion ~ (y~, Yj), where yj is a variable defined from zero 
to Y~. The lengths Yj and Zj are assumed to vary ran- 
domly from rod to rod from zero to infinity according 
to the normalized general distribution functions H(Yj) 
and h(Z~) respectively. There is no correlation between 
any particular Yj or Zj.. Thus the distance between any 
two scatterers will depend on the values taken inde- 
pendently by all the intervening Yj and Zj. It will be 
noted that the dependence of ~ on Yj will involve 
suffering an appropriate affine type of transformation 
from rod to rod. 

Let us assume for simplicity that the cross-sectional 
area A in equation (1) is unity, so that the rods can be 
considered purely as a one-dimensional problem. The 
amplitude of the scattered radiation is th.en given ex- 
actly by 

I 
U N +  I 

a(s)= ~o(u) exp [-2zdsu] du 
t t l l l  

= O(u) exp [-2zrisu] du. 
j = l  e u i  

Since Q(u) is only non-zero in the rods themselves, i.e. 
in the region 0 <yy < Yj, tb_en 

a(s)= ~= o ~(YJ) exp [ -  2rcis(uj +yj)] dyj 

N 

= ~. exp [ -  2rcisu~]fj( Y~, s),  
j - - I  

where 

which is the scattering amplitude of rod j. 

"o 
_l_ I_ Z .  i" v/ T z/ , vj+l =l 

uj uj+l 
/ 

uj+ 2 

Fig. 1. Model of rod scatterers with general density profile ~(y). 
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The resulting intensity will therefore be 

i(s)=a(s) . a*(s) 
N N 

= ~ ~ exp [--2rcis(uj-uk)lflf~. 
j = l  k = l  

The expectation value of this double summation can 
be evaluated by considering the terms in groups. 

First consider the terms with k=j, which will be 
N 

equal to ~ fj f~. Since fi is a function of YI, and the 
j = X  

values taken by Yj are given statistically by the distri- 
bution H(Yj), the expectation value of these terms will 

be equal to N J, where J=  H(Yj)d Yj. 

Now consider the ( N -  1) terms with k = ( j -  1) which 
will have the general form 

exp [ -  2~zis(Yj-1 + Zj-a)].l) f ; - l .  

Each. length Y~-I and Zj-~ will be given statistically by 
H(Yj) and h(Zj) respectively. The expectation value of 
all terms will therefore be 

{S } ( N - l )  f j -1H(Yj - , )  exp [-2rcisYj-d dYJ - ,  
0 

x ])(Yj)H(Yj)d =(N- 1)ayF.~ 
0 

where quite generally, for any j, 

Gv= ~H exp [ -  2rcis Y 1] d Y 1 

Fz= f :h  exp [-2rcisZ,] dZ, 

,v = l : f j  H dY, . 

Similarly for terms with k = ( j + l ) ,  the expectation 
value amounts to the conjugate quantity: 

( N -  1) G;F*??y. 

Hence the sum of all terms with k = j  + 1 will have an 
expectation value: 

= 2 ( N -  1) Re{GvFzTu}. 

Next consider terms where k = ( j - 2 ) ,  there will be 
( N - 2 )  terms of the form 

exp [ -  2rcis(rj_ 2 + Zj_2 + rl_, + zj_,)] 
fl(ri)f;_2(rl_2) . 

There is no correlation between Y~-z, Yj-x, ZI-2, Zt-1, 
so the expectation value for these terms will be 

( N -  2) GvFzFuFz~u 

l 
oo 

where the factor F u = H exp [ -  2rcis Yj] d Yt. 
0 

The terms with k = ( j + 2 )  give the conjugate of this 
quantity, so that the expectation value of all terms with 
k = (j + 2) will therefore be 

2 ( N -  2) Re{GryyFZzFy}. 
Similarly the sum of all terms with k = ( j +  r) will be 

2 ( U -  r) Re{@~yFrF~-X}. 
Hence the sum of all terms with k # j  will amount to 

N--1 

Re {2av?uFz ~ ( N - r -  1) (FyFz)r} . 
r = O  

This summation reduces to 
N 1 -(FuFz) N 

Re{2Gv?uFz [ (1-FyFz) - (1-FuFz) 2 1}" 

Thus by adding now the term fo r j=k ,  the expectation 
value of the total intensity is found to be the sum of 
two intensity terms iB and ic, where 

2Gu~'vFz 
iB=Re{N[J+ (1-FuFz)] } 

and (2) 

2Gu?uFz 
IB(s)--Re {-~ [ J+  ( 1 - F u F z ] }  

and 
~, r 2GuTvFz[1-(FuFz) N] 

Ic(s) = Ke ~-- ~ ( - f _  FuFz) z }. 

(3) 

2Guru Fz[1 -(FyFz)N] ~ 
i c=Re  [ .... (-]- Fu--F~z) 2 j" 

If ~(y) is made constant, these two terms degenerate 
into those with similar notation in the analysis of Hose- 
mann & Bagchi (1962). iB is directly proportional to 
N and in simple cases can be shown to obey Babinets' 
Principle in that it is unchanged if the density varia- 
tion along the rods is inverted, iB is mainly responsible 
for the first and higher order diffraction peaks (if re- 
solvable). The shape and width of these peaks depends 
on the degree of imperfection in the periodicity. The 
intensity term ic gives the zero order scatter; it also 
contains contributions which broaden the peaks of iB 
in a similar way to crystal size effects in atomic lattices. 
If N is sufficiently large and/or if the distribution func- 
tion functions H and h are sufficiently broad, then ic 
can be neglected. The conditions for neglecting ic are 
fully discussed by Hosemann & Bagchi (1962). 

In order to use these results for three-dimensional 
structures, equations (2) must be interpreted as repre- 
senting the total meridional scatter for a structure of 
unit area of cross section. If X is the mean periodic 
length, the length of the structure will be NX. Thus the 
total meridional scatter per unit volume of scattering 
sequence will be given by 
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For crystalline polymers the main term of interest out- 
side the zero order scatter will be In. Equation (3) 
has, therefore, been evaluated in part II (Blundell, 
1970) for the particular case when ~(y) has a trapezium- 
like profile. This case represents a structure whose 
projected density shows a gradual linear change in den- 
sity on going from the amorphous to the crystalline 
values. 

The author wishes to thank Dr A. Keller and Dr E. 
R. Howells for their encouragement to write these 
papers. 
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The small angle X-ray scatter from crystalline polymers is evaluated by using a one-dimensional model 
where the density between crystal and amorphous phases changes linearly over a finite transition range 
t, and where the sizes of the crystal and amorphous regions fluctuate according to independent Gaussian 
distributions. The calculation is based on the general model formulated in part I. Approximate expres- 
sions are derived for the width and area of the diffraction peaks. The dependence on t occurs in the 
factor sinZ z~st/(nst)2 which affects only the peak intensities. An analysis is made to find how the factor 
will modify theoretical interpretations based on experimental intensity measurements. 

1. Introduction 

When X-rays are scattered from crystalline polymers, 
diffraction maxima are observed at small angles corre- 
sponding to Bragg spacings of a few hundred Ang- 
strSms. This scatter is generally attributed to an alter- 
nation in texture between crystalline and amorphous- 
like intercrystalline regions, in which both regions 
fluctuate in thickness about their respective mean val- 
ues. Most theoretical treatments consider the phenom- 
enon in terms of one-dimensional models where the 
mean density changes abruptly between the crystalline 
and amorphous values, giving a rectangular step den- 
sity profile. The model discussed in this article intro- 
duces, between each phase, a transition zone where 
there is linear change in density from the crystalline 
to amorphous value, thus giving a repeated trapezium 
shape to the density profile. 

The review of the basic scattering situation in part I 
(Blundell, 1970) showed that the periodicity within a 
typical polymer sample can be represented by a one- 
dimensional model consisting of a line of non-over- 
lapping scattering rods arranged parallel to the period- 

icity. The line of rods can then be interpreted as rep- 
resenting tb_e projection onto the line of the excess in 
electron density over the background amorphous value. 
Part I concluded by formulating a general expression 
for the scattered intensity of a model where the density 
along a rod was given by an arbitrary function ~. In 
the present work ~ is taken to have a trapezium profile 
in which there are transition zones of length t at the 
ends of each rod. Such a transition length has also been 
considered by Tsvankin (1964 a, b) in a model which 
is based on slightly different assumptions from those 
used in part I, and which employed different distribu- 
tion statistics from those used here. However in Tsvan- 
kin's conclusions, the effects of  t are not clearly re- 
solved from the other parameters in his model. In the 
present article particular attention is paid to the ways 
in which the intensity curves for a simple rectangle 
profile must be modified when a transition zone is in- 
troduced. 

In this article particular reference is made to the con- 
ditions prevailing in samples made by sedimenting so- 
lution grown crystals (particularly polyethylene), since 
of all polymer systems these have the most well char- 


